首页> 外文OA文献 >Learning to Remove Multipath Distortions in Time-of-Flight Range Images for a Robotic Arm Setup
【2h】

Learning to Remove Multipath Distortions in Time-of-Flight Range Images for a Robotic Arm Setup

机译:学习如何去除飞行时间范围图像中的多径失真   用于机器人手臂设置

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Range images captured by Time-of-Flight (ToF) cameras are corrupted withmultipath distortions due to interaction between modulated light signals andscenes. The interaction is often complicated, which makes a model-basedsolution elusive. We propose a learning-based approach for removing themultipath distortions for a ToF camera in a robotic arm setup. Our approach isbased on deep learning. We use the robotic arm to automatically collect a largeamount of ToF range images containing various multipath distortions. Thetraining images are automatically labeled by leveraging a high precisionstructured light sensor available only in the training time. In the test time,we apply the learned model to remove the multipath distortions. This allows ourrobotic arm setup to enjoy the speed and compact form of the ToF camera withoutcompromising with its range measurement errors. We conduct extensiveexperimental validations and compare the proposed method to several baselinealgorithms. The experiment results show that our method achieves 55% errorreduction in range estimation and largely outperforms the baseline algorithms.
机译:飞行时间(ToF)相机捕获的距离图像由于调制光信号和场景之间的相互作用而被多路径失真破坏。交互通常很复杂,这使得基于模型的解决方案难以捉摸。我们提出了一种基于学习的方法来消除机械臂设置中ToF相机的多径失真。我们的方法基于深度学习。我们使用机械臂自动收集大量包含各种多径失真的ToF范围图像。利用仅在训练时间内可用的高精度结构光传感器自动标记训练图像。在测试期间,我们应用学习的模型来消除多径失真。这使我们的机器人手臂设置可以享受ToF相机的速度和紧凑型外观,而不会影响其测距误差。我们进行了广泛的实验验证,并将所提出的方法与几种基线算法进行了比较。实验结果表明,我们的方法在距离估计中减少了55%的误差,并且大大优于基线算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号